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1 Introduction 

A number of studies [1,2] were carried out in 1993 to determine the 
corrections required t o  reduce or eliminate beam loss due to excitation of 
transverse resonances in the AGS Booster. During the course of these 
studies it was found that the quadrupole corrections could not completely 
eliminate the beam loss observed as the 2Qx = 9 and 2Q, = 9 resonances 
were crossed. It was thought initially that an 18th harmonic octupole field 
might be responsible for the residual loss, but then it was found that the 
required corrections varied linearly with orbit radius which strongly 
suggested that quadrupole fields arising from the displacement of the closed 
orbit in sextupole fields were exciting the resonances. Beam particles 
whose momentum differs by Sp from the central momentum oscillate obout 
orbits which are displaced in the sextupoles and therefore see a quadrupole 
field which is proportional to Sp. If the sextupole field possesses a ninth 
harmonic, or if some combination of orbit harmonics and sextupole 
harmonics produce a ninth harmonic, then the quadrupole-driven 
resonances can be excited and this can account for the residual loss. It was 
found that by introducing a ninth harmonic with available sextupoles, the 
dependence of the required quadrupole correction on radius could be 
eliminated and the residual loss could be reduced substantially. 

Further studies and careful analysis by Y. Shoji [2,3] showed that the skew 
quadrupole and sextupole corrections required to eliminate beam loss as 
the Qa + Q, = 9 and 3Qx = 14 resonances are crossed also depend linearly 
on the orbit radius. This again suggested that the displacement of the 
closed orbit in higher order multipole fields-in this case skew sextupole 

. 
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and octupole fields-gives rise to lower order multipoles (skew quadrupole 
and sextupole) which excite the lower order resonances. The purpose of 
this note is to work out the details of how the displacement of the closed 
orbit in higher order multipoles gives rise to lower order multipoles which 
excite lower order resonances. The treatment is an extension of that given 
in Ref.[4] for the case of closed orbit distortions in sextupoles. We shall 
assume that the reference orbit Lies in a plane and shall employ the 
right-handed curvilinear coordinate system (x, y, s) introduced in Ref.[5]. 

2 The Multipole Vector Potential 

The hamiltonian treatment given in subsequent sections requires 
expressions for the vector potential of a multipole magnet. Here we 
develop these and other formulae for use later on. 
Inside a multipole magnet, far from the .magnet ends, the magnetic field is 
transverse to the reference orbit and one can choose a gauge such that the 
vector potential has no transverse components. The x and y components 
of the magnetic field are then 

where As is the longitudinal component of.the vector potential. Since the 
curl of the magnetic field is zero we then have 

which has solutions 

where Un and Vn are real functions of 2 and y. Differentiation of (3) with 
respect to x and y yields the Cauchy-Riemann equations 

(4) 
aUn aVn aUn aVn - - -- - -- - - ax a y 9  ay ax 

from which it follows that 

a2U, a2Un a2Vn a2Vn 
- 0 ,  - +-- - 0. 

ax2 ay2  
$7- 

a x 2  ay (5) 
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Thus both Un(z,y) and V,(z,y) are real solutions of (2) and we call them 
respectively the normal and skew 2n-pole vector potentials. Expanding 
(z + iy)" in (3) we find the following normal and skew vector potentials: 

Dipole: 

u1= 2, v1 = y  

Quadrupole: 

v2 = zy (7) u2 = -(z2 - y2), 
1 
2 

S extup ole: 

(8) u3 = -(z3 1 - 3zy 2 ), v3 = - z ( Y  1 3  - 3Z2Y) 
6 

Octupole: 

(9) 1 z4 - 6z2y2 + y4), 6 = -(4z 1 3  Y - 4zY 3 ) 24 U4 = -( 24 

Decapole: 

1 1 
120 120 

us = -(d - 1 0 ~ ~ ~ ~  + 5zy4), vs = -(5z4y - 1 0 ~ ~ ~ ~  + .y5). ( io) 

Differentiation of (3) with respect to z arid y also yields the relations 

Expanding ( z  + d)", where d = a + ib, we obtain 

(12) 
(% + d)" - %" d%"-l d2%"-2 d"-lz d" 

(n - I)! + 2' - - +  + + . a * +  n! n! (n- I)! 2!(n- 2)! 

which may be written as 

1 
2! An(% + d )  = An(%) + dAn- l (Z)  + -d2An-2(%) + 

(13) 
1 + 3z2An-2(d) + zAn-l(d) + An(d)- 
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Expressing each A,,, as U, + iV, we then have 

-(a2 1 - b2)Un-2(Z, y) - abVn-a(z, Y) + 2 

3 Hamiltonian for Oscillations about the 
Reference Trajectory 

The hamiltonian for oscillations about the reference trajectory is [6] 

H = -(1+ hz){l - (P, - U)2  - (P, - V)2}1'2 - (1 + hz)W (16) 

where 

A,, A,, A, are the components of the vector potential, p, and p, are the 
components of the momentum along x and y, and p is the particle 
momentum. The momentum of the reference particle is PO. We shall 
assume that the effects of any longitudinal magnetic fields (typically near 
the ends of magnets) can be neglected, in which case the transverse 
components of the vector potential may be set to zero. The longitudinal 
component of the vector potential is then 

A, = Ay - BZ + Bhx2/2 - B ~ ( z ~  - y2)/2 + C ~ F . ( Z ,  y) (18) 
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where A, B ,  and B1 are the values of B,, B,, and dB,/dx along the 
reference trajectory, 

eB0 
CPO ’ h = -  

and Bo is the value of the vertical guide field for which a particle of 
momentumpo follows the reference trajectory. The departure of B from 
Bo and of A from 0 are the errors in the vertical and horizontal fields along 
the reference trajectory. CnFn(x, y )  is the vector potential for the 
multipole under consideration. 

Thus we have 

where 

and the hamiltonianis then 

where 

Ho = -(Pz 1 + Pi) + !-E (E - n) h2z2 + --nh 1Po 2 y 2 
2 2 P  2 P  

Po Po 
P P 

- -gY - -hPY, 

and 
(24) 

Po 
P 

Hn = --KnFn(Z, y ) .  

Here we have omitted the term proportional to hxFn(x, y )  in H,, and only 
terms to second order in coordinates and momenta have been retained in 
the expression for Ho. The nh2x2 and nh2y2 terms in (23)  are responsible 
for horizontal and vertical focusing, and the factor po/p multiplying these 
terms gives rise to the variation of the tunes with momentum. The hx 
term is responsible for horizontal dispersion and for the distortion of the 
horizontal closed orbit due to errors in the guide field. Likewise the g y  
term is responsible for the distortion of the vertical closed orbit. The hgzy  
term couples the oscillations in the horizontal and vertical planes whenever 
the curvature, h, and the horizontal field are nonzero ( g  # 0) along the 
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reference trajectory. (This could occur if, for example, the horizontal 
bending magnets were rolled by some amount about the longitudinal axis 
thereby producing a horizontal field in a region of nonzero curvature.) 
Note that by setting p = PO,  B = Bo, and g = 0 in (23) one o b t e s  

(25) 
1 1 1 Ho = -(P: +Pi) + ~ ( 1 -  n)h2z2 + -nk2y2 2 2 

which is the usual hamiltonian for linear oscillations about the reference 
trajectory. 
The equations of motion, obtained from the canonical equations 

are 

and 

BPO -Bop h - Po -hgy - PO -Kn- OFn - 
2’’ + P (E - n) h2z + BOP P - 0, (27) 

P Oz 

I1 Po 2 Po PO OFn 
P OY Y + -nh y - -g(l+ hz) - -K,- = 0. 

P P 

we have Po- SP B SB -1--, -=l+-, 
P P Bo BO 

and, to first order in Sp/p and GBIBo, 

Equations (27-28) then become 

SB 
BO 

+ (1 - $) (1 - n)h2z t -h2z + 
= 0, - (1 - $) hgy- (1- $) Kn- OFn 

ax 
. and 

= 0. (33) 
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4 The Distorted Closed Orbit 

The deviation of the distorted closed orbit from the reference trajectory is 
given by the periodic solutions, zc(s) and yc(8), of equations (32) and (33). 
The llowest-order solutions are 

where 

(35) 

(361 

2 SB 
BO 

D" + (1 - n)h2D - h = 0, d i  + (1 - n)h d, + -h = 0, 

d: + nh2$ - g = 0. 

Here D(s )  is the horizontal dispersion and d,(s) and dg(s)  are the 
distortions of the horizontal and vertical closed orbits due to dipole errors. 
Thus both the horizontal dispersion and horizontal dipole errors contribute 
to zc while only vertical dipole errors contribute to yc. 

5 Hamiltonian for Oscillations about the 
Distorted Closed Orbit 

Following Ref.[4] we introduce new coordinates and momenta 

!I1 = 2 - zc, P l  = P, - 4, q2 = Y - Yc, p2 = Pg - y:, (37) 
which represent the deviations of the particle trajectory from the distorted 
closed orbit. This transformation is canonical and is generated by 

F2(%Pl,Y,P2) = (. - 4 ( P 1 +  4) + (Y - Yc)(P2 + Y:). (38) 

Thus we have 

and the new hamiltonian is 
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Using (23-24) and (27-28) in (41) we find 

where 

Using (11) and (14-15) in (44) we find, for the case in which Fn = Un, 
Po 
P 

G n  = --Kn[Un(q1, q2) + ocun-1(41,42) - ?/cVn-l(ql, q2) 
(45) 

1 + s (x :  - y,")un-2(~1, 42) - zc~cVn-2(~1,42) + * * -1, 

and for the case in which Fn = Vn, 
Po 
P 

G n  = ---Kn[Vn(41,42) + scVn-1(q1,42) + ycun-l(q1,42) 
(46) 

1 + s ( x :  - ~,")vn-2(41942) + xc~cun-2(~1,42) + * .I- 
Here we see that the displacements, xc and yc, of the closed orbit in the 
mdtipoles Un and Vn give rise to  lower order normal and skew multipoles 
which are proportional to  xc, yc, zz, y,!, and xcyc. Using the approximate 
expressions (34) for 2, and yc we obtain the following hamiltonians for 
various multipoles. 

S extup ole: 

G 3  = - K 3  [.. + 2DU2 + d,U2 - d,&] + (47) P 

Skew Sextupole: 

-F &Vi + d,U2] + (48) 

Octupole: 

+ dzU3 - d , h ]  + (49) 
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* 
Skew Octupole: 

Thus the strength of the normal (skew) 2(n - 1)-pole arising from the 
horizontal displacement of the closed orbit in a normal (skew) 2n-pole 
magnet is 

K(s) = -Kn(s) ['D(99) P + d , ( ~ ) ]  (51) 

and the strength of the skew (normal) 2(n - 1)-pole arising from the 
vertical displacement of the closed orbit in a normal (skew) 2n-pole 
magnet is 

K ( s )  = k.Kn(S)dV(s). (52y 

6 Resonance Excitation 

Transverse resonances [7] are defined by the equation 

mQx + nQ,, = N (53) 

where Q x  and Q,, are the horizontal and vertical tunes, and m, n, and N 
are integers. If m and n have opposite signs, the resonance is called a 
difference resonance; otherwise it is called a s u m  resonance. The order, I, 
of the resonance is 

I = Iml+ In!. (54) 
The resonance condition (53) arises from the first-order perturbation 
treatment of the vector potential terms drnlylnl associated with the 2Lpole 
field. Resonance excitation can occur only if the tunes are sufficiently close 
to the resonance and the excitation coefficient, 

is nonzero. Here 
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and a3 = B, (B2) if n is even (odd). Since 

$ ( 8 )  = mpx + np, M Ne, (58) 

when the tunes are near the resonance, we see that the excitation 
coefficient is essentially the Nth  harmonic, in azimuth e, of the multipole 
strength K(s) .  Thus if the tunes are sufficiently close to  the resonance, i.e. 
if they are within the resonance stopband, and if n is even (odd), the 
resonance will be excited by the Nth harmonic of the normal (skew) 
2Z-pole fields present in the machine. The width of the stopband is 
proportional to  the strength of the 2Z-pole field, and for resonances of order 
3 and higher also depends on the amplitudes of the betatron oscillations. 
In the AGS Booster we therefore have the following possibilities: 

0 '  

The resonances 2Q2 = 9 and 2Q, = 9 can be excited by the ninth 
harmonic present in 

K ( s )  = -K3(4 [Z --D(s) + d&)] , (59) 

where K3(8) is the sextupole strength along the reference trajectory, or by 
the ninth harmonic present in 

K(8) = -K3(s)d,(s), (60) 

where &(s) is the skew sextupole strength along the reference trajectory. 
The resonance Q2 + Q, = 9 can be excited by the ninth harmonic present 
in 

where K3(8) is the skew sextupole strength along the reference trajectory, 
or by the ninth harmonic present in 

where K3(s) is the sextupole strength along the reference trajectory. 
The resonances 3Q2 = 14 and Q2 + 2Q, = 14 can be excited by the 14th 
harmonic present in 
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where K4(s) is the octupole strength along the reference trajectory, or by 
the 14th harmonic present in 

where .&(a) is the skew octupole strength along the reference trajectory. 

The resonances 3Q, = 14 and Q, + 2Qz = 14 can be excited by the 14th 
harmonic present in 

K ( s )  = -K4(4 [:D(s) + d 4  , (65) 

where K4(s) is the skew octupole strength along the reference trajectory, 
or by the 14th harmonic present in 

where K4(s) is the octupole strength along the reference trajectory. 
The contributions of D and d, to K(s) in the AGS Booster are discussed in 
Ref.[3]. 
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